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Intro: QGP and holography

I AdS/CFT is a great arena to study strongly coupled CFT

I Study time-dependent evolution of QGP by solving classical
gravity in AdS

I Remarkable tool: characteristic formulation of GR [Chesler,
Yaffe]. Consider null foliation of space-time, eoms acquire
nested form. Full time-evolution determined by solving –
nested – linear ODE’s.

I Einstein gravity corresponds to infinite coupling. Capture
finite coupling corrections by considering higher curvature
terms. Expect Gauss-Bonnet gravity to be a good toy model
of these corrections

I Today: effect of finite coupling (Gauss-Bonnet) on
isotropization.
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Holographic Isotropization

Consider spatially homogeneous but unisotropic plasma in the
initial state. This can be described in the dual gravity theory by

ds2 = −2A(r , t)dt2 + 2dtdr + Σ(r , t)2(eB(r ,t)dx2⊥ + e−2B(r ,t)dx2‖ )

Choose asymptotically AdS bc’s and prescribe B(r , t = 0).

B → 0 at t →∞, when this happens the system has become
isotropic.

Ward identities imply that the energy density is constant. The
interesting observable is ∆p

∆p = T zz − 1

2
(T xx + T yy ) ∝ ∂u(u−3B)

∣∣
u=0

, u = 1/r

No hydro modes excited (no spatial dependence).



Isotropization in characteristic formulation

Characteristic formulation: metric written in null foliation.
Adapted to this, write the time derivatives in terms of

d+ = ∂t + A∂r

This allows us to write the eoms in a nested pattern

0 = Σ′′ +
1

2
Σ (B ′)2 ,

0 = (d+Σ)′ + 2(d+Σ)
Σ′

Σ
− 2Σ ,

0 = (d+B)′Σ +
3

2
(d+B)Σ′ +

3

2
(d+Σ)B ′ ,

0 = A′′ − 6(d+Σ)
Σ′

Σ2
+

3

2
(d+B)B ′ + 2 ,

Provided B(r , t = 0) and asymptotic bc’s, solution is determined
uniquely (solve linear ODE’s and integrate in time at each step)



Isotropization in characteristic formulation 2: results

Consider Gaussian profile B(u, t = 0) = βu4 exp(−(u − u0)2/w2)

I System isotropizes quickly b(tis0)� 1 for tiso ∼ 1/T

I For generic IC, evolution well described by QNM [Heller,
Mateos, van der Schee, Triana]



Isotropization in characteristic formulation 3: QNM match
Expand initial condition in QNM

b(u, 0) =

NQNM∑
i=1

Ciφi (u), lin. thy.predicts b(u, t) =

NQNM∑
i=1

Ciφi (u)e−iωi t

Do regression to determine the Ci ’s and compare. For NQNM = 10
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[Heller, Mateos, van der Schee, Triana] found that this holds true
quite generically (avoid caustics, better for some IC than others).



Finite coupling corrections

In AdS/CFT, α′ corrections to SUGRA map to finite ’t Hooft
coupling. In IIB, first correction is ∼ γR4, and can be treated
perturbatively

η

s
=

1

4π
(1 + 135γ)

Toy model: consider ∼ λGBR2 correction which preserves second
order eoms, namely Gauss-Bonnet gravity. Similar behaviour of the
viscosity for λGB < 0

η

s

∣∣∣∣
GB

=
1

4π
(1− 4λGB)

Also QNMGB behave similarly to QNMR4 for λGB < 0 [Grozdanov,
Kaplis, Starinets]

For computational simplicity, we consider Gauss-Bonnet here



Gauss-Bonnet gravity 2

SGB =

∫
d5x
√
−g
(
R + 12 +

λGB
2

(
RµνρσR

µνρσ − 4RµνR
µν + R2

))
I Leads to second order eoms

E0 + λGBEGB = 0

I Known stationary BH solution

ds2 =
dr2

f (r)
−f (r)dt2+r2d~x2, f =

r2

2λGB

(
1−

√
1− 4λGB(1− r4H/r

4)

)
I Gravitational QNM have been computed [GKS]

I Holographic renormalization is known. Can compute Tµν .
[Brihaye, Radu]



Gauss-Bonnet gravity 2, perturbation theory

Want to study isotropization in this modified theory. Using the
same d+, not obvious that the nested structure is preserved.

Treat the problem perturbatively

g = g0 + λGBδg , ⇒ E0,lin[δg ] = −EGB [g0]

Eoms are by construction linear (and nested!)

Solve for the linear perturbation using:

I Initial condition: keep anisotropy fixed

I Boundary condition: keep energy fixed

Given a background, find unique linearized solution.



Isotropization for Gauss-Bonnet, results

Book-keeping b = b0 + λGBδb,

∆p = ∆p0 + λGBδ(∆p), δ(∆p) = −3∂u

(
δb +

1

2
b0

)
|u=0
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(b)

Note: shift of ∆p given by the sign λGB . Observe qualitatively
similar behaviour for all IC’s. True in general?



Isotropization for Gauss-Bonnet, match QNM

Good agreement with QNM, as in the λGB = 0 case.

QNM fit

Full time evolution
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We can use this simplification to provide an argument for the
observed shift.



Shift in ∆p using QNM

Want to argue that ∆p is “approximately shifted” from ∆p0, for
all initial conditions.
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More precisely, ∆p′(t) and δ(∆p)(t) have the same sign for t > t̃
with t̃ small.



Shift in ∆p using QNM, cont’d

From the QNM expansion,

b(u, t) = Re
∑
i

Ciφi (u)e−iωi t

Expand

φi = φ
(0)
i + λGB δφi , Ci = C

(0)
i + λGB δCi , ωi = ω

(0)
i + λGB δωi

and obtain

δb(u, t) =
∑
i

e−iω
(0)
i t(δCiφ

(0)
i (u) + Ciδφ

(0)
i (u)− itδωiC

(0)
i φ

(0)
i (u))

δ(∆p)(t) ∼ ∂uδb(0, t)

δb(u, 0) = 0 relates δCi with Ci via regression.



Shift in ∆p using QNM, cont’d

Key point: relation between δCi with Ci is given by a universal
(IC-independent) matrix. This allows us to write

δ(∆p) =

2NQNM∑
k=1

CkFk(t), Ck = {ReCi , ImCi}

where Fk(t) are universal. Also, trivially,

∆p0 =

2NQNM∑
k=1

CkF
(0)
k (t)

For our purposes, it is sufficient that F (0)
k (t) and ∂tFk(t), have

the same sign. These are independent of the IC’s, and we can

easily check F (0)
k (t)∂tFk(t) > 0 using background quantities.



Shift in ∆p using QNM, cont’d

δ(∆p)′(t) same sign as ∆p0
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”Q.E.D”



Summary

I We have extended the analysis of far-from-equilibrium
processes to higher derivative holography

I Time evolution in Gauss-Bonnet is in good agreement with
QNM picture

I At least in the linear regime, we find that isotropization time
grows with η/s

I Shift in ∆p/p, controlled by the sign of λGB . Provided a
semi-analytic argument

I Contrast with bona-fide α′ correction. Same structure, just a
bit messier. Expect same behaviour for λGB < 0


