Isotropization at finite coupling

Tomas Andrade (Oxford)

July 1, 2016, Santiago de Compostela

1607.XXXXX TA, Jorge Casalderrey-Solana, Andrej Ficnar



Intro: QGP and holography

» AdS/CFT is a great arena to study strongly coupled CFT

» Study time-dependent evolution of QGP by solving classical
gravity in AdS

» Remarkable tool: characteristic formulation of GR [Chesler,
Yaffe]. Consider null foliation of space-time, eoms acquire
nested form. Full time-evolution determined by solving —
nested — linear ODE's.

» Einstein gravity corresponds to infinite coupling. Capture
finite coupling corrections by considering higher curvature
terms. Expect Gauss-Bonnet gravity to be a good toy model
of these corrections

» Today: effect of finite coupling (Gauss-Bonnet) on
isotropization.
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Holographic Isotropization

Consider spatially homogeneous but unisotropic plasma in the
initial state. This can be described in the dual gravity theory by

ds® = —2A(r, t)dt* + 2dtdr + X(r, t)*(eP("dx? + e 2B dx?)
Choose asymptotically AdS bc's and prescribe B(r,t = 0).

B — 0 at t — o0, when this happens the system has become
isotropic.

Ward identities imply that the energy density is constant. The
interesting observable is Ap

1
Ap=T%— (T + T7) x 9,(u*B)]

5 u=1/r

u=0’

No hydro modes excited (no spatial dependence).



Isotropization in characteristic formulation

Characteristic formulation: metric written in null foliation.
Adapted to this, write the time derivatives in terms of

d, = 0 + Ad,

This allows us to write the eoms in a nested pattern

0 — Z//—F%Z(B/)Z,

z/
0 = (dX) +2(diE)5 — 28,
0 = (d+B)’Z+g(d+B)Z’+g(

Y 3
0 == A//—6(d+2)§+§(d+8)8/+2,

d,Y)B,

Provided B(r,t = 0) and asymptotic bc's, solution is determined
uniquely (solve linear ODE's and integrate in time at each step)



Isotropization in characteristic formulation 2: results

Consider Gaussian profile B(u, t = 0) = Su* exp(—(u — ug)?/w?)

Apipeq

» System isotropizes quickly b(tiso) < 1 for tiso ~ 1/ T

» For generic IC, evolution well described by QNM [Heller,
Mateos, van der Schee, Triana]



Isotropization in characteristic formulation 3: QNM match
Expand initial condition in QNM

Nonm Nonm

0) = Z Ci¢i(u), lin.thy.predicts b(u,t) Z Cigi(u)e™ it
i=1

Do regression to determine the C;'s and compare. For Noyy = 10
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[Heller, Mateos, van der Schee, Triana] found that this holds true
quite generically (avoid caustics, better for some IC than others).



Finite coupling corrections

In AdS/CFT, o corrections to SUGRA map to finite 't Hooft
coupling. In IIB, first correction is ~ yR*, and can be treated

perturbatively
n

1
= —(1+135
s 47r( + )

Toy model: consider ~ Agg R? correction which preserves second
order eoms, namely Gauss-Bonnet gravity. Similar behaviour of the
viscosity for Agg < 0

n 1

I = =1 -4ax
[l =it

Also QNMgg behave similarly to QNMga for Agg < 0 [Grozdanov,
Kaplis, Starinets]

For computational simplicity, we consider Gauss-Bonnet here



Gauss-Bonnet gravity 2

A
See = /dsx\/—ig (R 124+ % (Ruvpo RMVP7 — 4R, R + R2)>

» Leads to second order eoms

Eo + AgEce =0

» Known stationary BH solution

dr? r?
2 _ _ 2,2 10 _ 1 _ 4.4
ds® = o) f(r)dt“+ridx, f s (1 \/1 dhge(1 —ryy/r ))

» Gravitational QNM have been computed [GKS]

» Holographic renormalization is known. Can compute TH.
[Brihaye, Radu]



Gauss-Bonnet gravity 2, perturbation theory

Want to study isotropization in this modified theory. Using the
same dy, not obvious that the nested structure is preserved.

Treat the problem perturbatively
g = 8 + Agplg, = Eo1in[6g] = —Eca[go]
Eoms are by construction linear (and nested!)

Solve for the linear perturbation using:

» Initial condition: keep anisotropy fixed

» Boundary condition: keep energy fixed

Given a background, find unique linearized solution.



Isotropization for Gauss-Bonnet, results

Book-keeping b = by + Aggdb,

Ap = Apy + )\GB(S(AP)’ 5(Ap) = —30, (5[) + —bo) |u:0
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Note: shift of Ap given by the sign Agg. Observe qualitatively

(b)
similar behaviour for all IC’'s. True in general?
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Isotropization for Gauss-Bonnet, match QNM

Good agreement with QNM, as in the Agg = 0 case.
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We can use this simplification to provide an argument for the

observed shift.



Shift in Ap using QNM

Want to argue that Ap is “approximately shifted” from Apg, for
all initial conditions.

Ap | peq
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More precisely, Ap'(t) and §(Ap)(t) have the same sign for t > £
with £ small.



Shift in Ap using QNM, cont'd

From the QNM expansion,
= Re Z Cigpi(u)e it

Expand
6i =8\ + Aes00i, Ci=C” +Xe80C,  wi=w” + A dw;
and obtain

ECREDI (3G () + G0 (0) — itdwr 6" ()
5(Ap)(t) ~ 8u5b(07 t)

db(u,0) = 0 relates §C; with C; via regression.



Shift in Ap using QNM, cont'd

Key point: relation between §C; with C; is given by a universal
(IC-independent) matrix. This allows us to write

2NQNM

5(Ap) = Z Ck]:k(t), Ci = {RGC,',IHIC,'}
k=1

where Fy(t) are universal. Also, trivially,

ZNQNM

Ap= Y aFO)
k=1

For our purposes, it is sufficient that ]-',EO)(t) and 0¢Fi(t), have
the same sign. These are independent of the IC's, and we can
easily check f,go)(t)é?t}"k(t) > 0 using background quantities.



Shift in Ap using QNM, cont'd




Summary

v

We have extended the analysis of far-from-equilibrium
processes to higher derivative holography

v

Time evolution in Gauss-Bonnet is in good agreement with
QNM picture

v

At least in the linear regime, we find that isotropization time
grows with 7/s

» Shift in Ap/p, controlled by the sign of Agg. Provided a
semi-analytic argument

v

Contrast with bona-fide o’ correction. Same structure, just a
bit messier. Expect same behaviour for Agg < 0



